Exam I MTH 512 , Fall 2018

Ayman Badawi

QUESTION 1. Let $B=\{(1,-1,-1),(1,0,-1),(1,-1,0)\}$ be a basis for R^{3} and $B^{\prime}=\{(1,-1),(-1,2)\}$ be a basis for R^{2}. Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation over R such that $T(1,-1,-1)=(1,-1), T(1,0,-1)=$ $(-1,1), T(1,-1,0)=(1,0)$.
(i) Find the matrix representation of T with respect to B and B^{\prime}, i.e. $M_{B, B^{\prime}}$.

Using class notes $Q=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right], W=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]$. Let M be the standard matrix representation.
We know $M_{B, B^{\prime}}=W^{-1} M Q$. Now, reading class notes, we know that $T(1,-1,-1)$ is the first column of $M Q$, $T(1,0,-1)$ is the second column of $M Q$, and $T(1,-1,0)$ is the third column of $M Q$. Hence staring at the question $M Q=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]$. Now $W^{-1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$. Hence $M_{B, B^{\prime}}=W^{-1} M Q=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 0 & 1\end{array}\right]$.
(ii) Find a general formula for $[(a, b, c)]_{B}$
by Class notes: $[(a, b, c)]_{B}=Q^{-1}\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}-a-b-c \\ a+b \\ a+c\end{array}\right]$.
(iii) Find a general formula for $[(c, d)]_{B^{\prime}}$ By class notes: $[(c, d)]_{B^{\prime}}=W^{-1}\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{c}2 c+d \\ c+d\end{array}\right]$.
(iv) Find $[(2,1,-1)]_{B},[T(2,1,-1)]_{B^{\prime}}$, and $T(2,1,-1)$

Again, class notes: (a) From (II) $[(2,1,-1)]_{B}=Q^{-1}\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$
(b) From class notes: $[T(2,1,-1)]_{B^{\prime}}=M_{B, B^{\prime}}\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
(c) From (b) and using $B^{\prime}, T(2,1,-1)=-3(1,-1)+1(-1,2)=(-4,5)$.
(v) Write Range T as span

The easiest is to use M from (VII). Stare at M. Do minor row operations. Range $=\operatorname{span}\{(-1,2),(-2,2)\}$
(vi) write $\mathrm{Z}(\mathrm{T})(\operatorname{ker}(\mathrm{T}))$ as span

Staring at \mathbf{M} and read the homogenous system, we conclude $Z(T)=\operatorname{span}\{(-1,0.5,1)\}=\operatorname{span}\{(-2,1,2)\}$.
(vii) Find the standard matrix representation of T.

From (i), $M Q$ is given. Hence $M Q=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]$. Thus, $M=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right] Q^{-1}=\left[\begin{array}{ccc}-1 & -2 & 0 \\ 2 & 2 & 1\end{array}\right]$.
QUESTION 2. Let $T: P_{4} \rightarrow P_{3}$ be a linear transformation over a field F such that $\operatorname{dim}(Z(T))=2$ (i.e., $\operatorname{dim}(\operatorname{Ker}(\mathrm{T}))$ $=2$). Convince me that there is a polynomial $f(x) \in P_{3}$ such that $T(d(x)) \neq f(x)$ for every $d(x) \in P_{4}$.

Proof. We know $\operatorname{dim}(Z(T))+\operatorname{dim}(\operatorname{Range}(T))=4$. Since $\operatorname{dim}(Z(T))=2$, we conclude $\operatorname{dim}(\operatorname{Range}(T))=2$. Thus T is not onto. Hence $\operatorname{Range}(T)$ is a proper subspace of P^{3}. Thus there is a polynomial $f(x) \notin \operatorname{Range}(T)$. Hence for every $d(x) \in P_{4}$ we have $T(d(x)) \neq f(x)$. .
QUESTION 3. Let $B=\left\{x^{3}+1, x^{3}+x^{2}+x+1\right\}$ be a basis of a subspace of P_{4} over Q. Extend B to a basis of $P_{4}($ over $Q)$. use the techniques I gave you in class. Done. All of you got it right. .

QUESTION 4. Let $T: P_{4} \rightarrow P_{4}$ be a linear transformation over R such that $C_{T}(\alpha)=\alpha^{4}-4 \alpha^{2}$. Find all possible polynomials in P_{4}, say $f(x)$, such that $T(f(x))=-f(x)$
T has only $\mathbf{0}$ (repeated twice), $\mathbf{2}, \mathbf{- 2}$ as eigenvalues. Suppose there is a nonzero polynomial $f(x)$ in P_{4} such that $T(f(x))=-f(x)$. Then we conclude that -1 is an eigenvalue of T. Since -1 is not an eigenvalue of T, we conclude that $T(f(x))=-f(x)$ if and only if $f(x)=0$.

QUESTION 5. Let $T: P_{4} \rightarrow R^{2}$ be a linear transformation over R such that $T(f(x))=(f(1), f(0))$.
1)Find $Z(T)(\operatorname{Ker}(T))$ and write it as span.

Typical question: No one should miss, $Z(T)=\operatorname{span}\left\{-x^{3}+x^{2},-x^{3}+x\right\}$.
2) Write Range(T) as span

Since $\operatorname{dim}(Z(T))=2$, then $\operatorname{dim}(\operatorname{Range}(T))=2$. Hence $\operatorname{Range}(T)=R^{2}$ (i.e., T is ONTO). Thus span of any two independent points in $R^{2}=\operatorname{Range}(T)=R^{2}$. For Example, we may say $\operatorname{Range}(T)=\operatorname{span}\{(1,0),(0,1)\}$.

QUESTION 6. Let A be a 3×3 matrix over Q with eigenvalues 2 , -1 . Given $E_{2}=\operatorname{span}\{(1,1,-1),(0,1,-1)\}$ and $E_{-1}=\operatorname{span}\{(-1,-1,2)\}$.
1)Find a matrix $D, 3 \times 5$, of maximum rank such that such that $A D-2 D=0_{3 \times 5}$, where $0_{3 \times 5}$ is the zero-matrix 3×5.

Note, we need D such that $A D=2 D$. This means: $A \times$ (first column of \mathbf{D}) $=2 X$ (First column of \mathbf{D}), and so on, $A \times($ fifth column of $D)=2 X$ (fifth column of D). Hence by staring, columns of D must "live" in E_{2}. Since $\operatorname{dim}\left(E_{2}\right)=2, D$ will have maximum two independent columns. Thus $\operatorname{Rank}(D)=2$. So you may take $D=\left[\begin{array}{ccccc}1 & 0 & 2 & 3 & 0 \\ 1 & 1 & 2 & 3 & 0 \\ -1 & -1 & -2 & -3 & 0\end{array}\right]$
2)Find $|A|$ and $\operatorname{Trace}(A)$.
by Staring at E_{2} and $E_{-1}, C_{A}(\alpha)=(\alpha-2)^{2}(\alpha+1)$. Eigenvalues are: 2, 2, -1.
Hence $|A|=2 X 2 X-1=-4$. Trace $(A)=2+2+-1=3$.
QUESTION 7. Let $T: P_{2} \rightarrow P_{2}$ be a linear transformation over R such that $C_{T}(\alpha)=\alpha^{2}-4$.

1) Let $L: P_{2} \rightarrow P_{2}$ be a linear transformation over R such that $L(f(x))=T^{2}(f(x))+4 T(f(x))+f(x)$. Find $C_{L}(\alpha)$

Eigenvalues of T are 2,-2. Thus exist nonzero polynomials $d(x), w(x) \in P_{2}$ such that $T(d(x))=2 d(x)$ and $T(w(x))=-2 w(x)$. Thus $L(d(x))=T^{2}(d(x))+4 T(d(x))+d(x)=4 d(x)+8 d(x)+d(x)=13 d(x)$. Hence 13 is an eigenvalue of L.
$L(w(x))=T^{2}(w(x))+4 T(w(x))+w(x)=4 w(x)-8 w(x)+w(x)=-3 w(x)$. Thus $\mathbf{- 3}$ is an eigenvalue of L.
Hence $C_{L}(\alpha)=(\alpha-13)(\alpha+3)$.
2)For every $f(x) \in P_{2}$, find $T^{4}(f(x))$

Clearly, $P_{2}=\operatorname{span}\{d(x), w(x)\}\left(\mathbf{d}(\mathbf{x}), \mathbf{w}(\mathbf{x})\right.$ as in (1) above). Let $f(x) \in P_{2}$. Then $f(x)=a d(x)+b w(x)$ for some $a, b \in R$.

Thus $T^{4}(f(x))=T^{4}(a d(x)+b w(x))=a T^{4}(d(x))+b T^{4}(w(x))=16 a d(x)+16 b w(x)=16(a d(x)+b w(x))=$ $16 f(x)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

